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Ground State of a Spin-Phonon System. 
I. Variational Estimates 
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A study is made of the ground-state energy of a spin-one-half particle in a field 
B and interacting with a phonon bath. The infrared-sensitive case of acoustic 
phonons with point coupling in three dimensions is characterized by two 
parameters, a coupling constant ~ and B. Units are used where the high- 
momentum phonon cutoff is unity. There is a curve e(B) separating a sym- 
metry-breaking region with a long-range phonon field from a normal region. 
Two simple, well-known, approximations are compared. The source theory 
yields discontinuities in the first derivatives of the energy with respect to B and c~ 
when B > e -1 and an infinite-order transition when B < e -1, but is trivial in the 
large-e region. The classical theory yields discontinuities in the second 
derivatives but is trivial in the small-c~ region. An improved variationally fixed 
ground-state wave function is analyzed. It gives a new c~(B) curve with an 
infinite-order transition with continuous energy derivatives when B <  
e/(e z - 1/4) and with discontinuous derivatives when B is larger than this value. 
It is nontrivial in the entire ~(B) plane. The crossover to classical behavior 
occurs near c~ = 1/2 for B,r 1. But the wave function does not describe quantum 
fluctuations in the large-c~ phase. A second way of combining source and 
classical effects is described. It yields a second-order transition (near c~ = 1/2 for 
B ~  1) everywhere. These theories are special cases of a symmetry-breaking 
transformation together with a one-mode treatment of quantum fluctuations. 
The transition is viewed in terms of a single mode with a variable length, 
coupled dynamically to the spin. 

KEY W O R D S :  Spin phonon transition; Spin phonon ground state. 

1. I N T O D U C T I O N  

A t w o - l e v e l  s y s t e m  c o u p l e d  to  a b o s o n  f ie ld  c a n  b e  u s e d  to  d e s c r i b e  

p r o c e s s e s  in  q u a n t u m  o p t i c s ,  c o n d e n s e d  m a t t e r  p h y s i c s ,  c h e m i c a l  p h y s i c s ,  

m e s o n  t h e o r y ,  e tc .  A s p i n - l / 2  d e s c r i p t i o n  m a y  b e  u s e d  f o r  t h e  t w o - l e v e l  
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system and the unperturbed spin Hamiltonian is - � 8 9  t. The boson field 
r is characterized by a spectrum co(k). The coupling to the spin is 
proportional to ax and to the field r with a form factor D(x). The 
interaction consists of a spin flip together with emission or absorption of a 
boson. 

In the case of optical modes where co(k) is a constant, independent of 
k, the problem is soluble. The boson field can be described in terms of 
modes, chosen so that the spin is coupled to a single mode. The exact 
eigenfunctions and eigenvalues may be determined by solving a three-term 
recurrence relation numerically to any desired accuracy. As a consequence, 
one can determine the thermodynamics and response functions. However, 
energy conservation forbids irreversible decay of the spin from the excited 
state. 

With a more general co(k), irreversible decay is permitted, and one is 
interested in the properties as a function of B and a coupling constant ~. 
The response functions have been studied intensively in the past decade by 
a large number of analytic approaches. Path integral techniques have been 
particularly successful. The subject is extensively reviewed in the article by 
Leggett et al. ~) The case of an acoustic spectrum co(k)=c[k] is especially 
subtle and challenging. In three dimensions with a point coupling 
D ( x ) - 6 ( x ) ,  the field ~b(x) has a 1/Ix] behavior when couplied to a fixed 
source. The energy is finite, but there is an infinite number of quanta, i.e., 
an infrared divergence connected with the 1/Ix] dependence. On the other 
hand, if recoil of the source is included and the problem is treated by 
perturbation theory, the divergence disappears. The present paper focuses 
on this case and examines the behavior of the grund-state energy E as a 
function of the coupling constant c~ and of the magnetic field B. 

The crudest approximations indicate that there is a curve e(B) such 
that on one side r has the l/Ix] behavior and on the other a shorter range 
behavior. Two such approximations are reviewed in Section 3. One is a 
variational extension of the source-type solution. It has the property that 
@E/@B at fixed a and @E/Oe at fixed B have discontinuities across the ~(B) 
line when B > e -~. For  B < e -1 there is a very soft infinite-order transition. 
The second is a semiclassical theory based on introducing a symmetry- 
breaking mean value for the boson field. The e(B) curve is very different, 
but (O2E/~B2)~ and (632E/6~2)B exhibit discontinuities. The magnitude of 
the long-range symmetry-breaking field tends to zero as one approaches 
the line. The two approximations are compared in Section 4 by matching 
energies. This leads to a new c~(B) line, which now has a first-order trans- 
ition. I define a first-order transition as one where the first derivatives of 
energy jump. The theories are nontrivial in the entire c~(B) plane. 

The existence of the a(B) line has been discussed from a more rigorous 
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point of view by Spohn and Dumcke. (2/ They use a functional integral 
formulation and relate the problem to the one-dimensional Ising model 
with long-range interactions. 

The problem has been discussed by many people using different 
approaches. The B ~  1 region has been treated by Emery and Luther, (3~ 
Chakravarty, (4) Silbey and Harris, (s) Tanaka and Sakurai, ~6) and 
Prelovsek. (7/The B >  1 region has been studied by an equation of motion 
technique by Beck et al. (s) and Prelovsek. (7) However, it appears to us that 
neither the position of the e(B) line nor the behavior of the derivatives 
of the energy at the line have been definitively established. There is 
disagreement about whether the transition occurs near c~ = 1/2 or e = 1 for 
B,~ 1 and there is disagreement as to whether the transition is first order or 
second order for B > 1. 

It is not easy to compare the theories, since they are based on different 
formalisms. The present approach is to start with simple ground-state wave 
functions which correspond to some of the theories. I then enrich the 
functions so as to incorporate physical effects that are neglected or treated 
inadequately. In particular, one must pay attention to multiquanta effects 
in the transition to classical behavior and must treat quantum fluctuation 
effects equally accurately in both normal and broken symmetry phases. 
What emerges is that the crossover to classical behavior is near c~= 1/2 
when B ~  1. If there is a phase transition, it is very soft, with all finite 
derivatives continuous and occurring near e =  1. In fact, in a separate 
paper I treat the B ~  1 limit rigorously by another method. I show that 
there is no transition to order B 2 in the energy. I will also treat the B > 1 
limit rigorously and show that the transition is first order. 

My concern in this paper is with theories which give E(~, B) over the 
entire (c~, B) plane, and to make clear the physical effects that play a role. 

In Section 5 I examine one wave function with parameters that can be 
chosen to reduce to the classical and modified source parameters. It is 
superior to both and shows a continuous crossover to classical behavior 
near c~ = 1/2 (B,~ 1). There is a transition near ~ = 1 similar to that of the 
source theory. For  B <  Bcr= e/(e 2 -  1/4)=0.38076 the energy derivatives 
are continuous. There is a quantity fi which is the inverse of a length, which 
tends to zero as one approaches the a(B) line. This line is c~= 
[1 + (1 + B2)1/2]/2. The numbers refer to units where the sound speed and 
phonon upper cutoff are taken to be 1. For  B >  Bcr the transition is first 
order. In contrast to the source theory, the high-~ phase is not trivial, and 
in fact agrees with the classical theory. However, quantum fluctuation 
effects in the high-e phase are not treated. 

In Section 6 I examine a different function with broken symmetry, 
which also reduces to both source and classical theories. This function 
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treats quantum fluctuations in the high-c~ phase, and the energy is con- 
tinuous in the vicinity of c~ = 1 (B ,~ 1 ). The transition to classical behavior 
again occurs near ~ = 1/2, but now there is a second-order transition. This 
persists over the entire plane, and for B >> 1 is near c~ = B/2. This theory 
reduces to the source theory in the low-c~ region. 

In Section 7 I outline an approach that involves a symmetry-breaking 
field together with a one-mode reduction of the Hamiltonian. The spin is 
coupled dynamically to the mode. All earlier approximations are special 
cases of this formulation. The mode has a parameter fl characterizing the 
spatial extent of the mode. The transition is determined by the behavior of 
this parameter. The one-mode problem can be solved exactly numerically, 
but this is not done here. 

2. NOTATION 

Let us study the Hamiltonian 

H =  - -~  a z - ~  ~ ]-a(k) + a + ( k ) ]  dk a+(k) a(k)dk 
(1) 

A spin-l/2 (units h = l) particle interacts with a boson field 

[a(k), a+(t)]  = 6(k - / )  (2) 

Introducing 

a(k) + a § ( - k) a + (k) - a( - k) 
q(k) = x/2 , p(k) = i ,,/2 (3) 

[-q(k), p(l))=i6(k-l), q+(k)=  q ( - k )  (4) 

the Hamiltonian is 

H= 2 fD(-- k)q(k)dk+Hoh 15) 

1 
f co{p(k) p ( - k )  + q(k) q ( - k ) -  1} dk (6) Hph = 

This allows us to have a collection of unit-frequency oscillators in the 
absence of interaction. The unperturbed ground state of the boson field is 

1 - k )  dk} r  q(k) q( (7) 

The prefactor Q stands for normalization in the continuum limit. 
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Note that these coordinates are different from the Fourier components 
of the field, and that 

~b(x) = ( 2 @  f q(k)exp( ik" x ) d k  (8) 
7z 

We are particularly interested in the acoustic case where co(k)= c lk[. 
The sound speed c will be taken to be unity. D(k) is a constant up to a 
cutoff ko, 

D(k)=l for k < k  o 
(9) 

= 0  for k>ko 
This case has subtle behavior in the infrared. Complete the 

specification of units by taking k0 = 1. 
The parity operator 

P:exp[i(2+fa+adk) r~ ] (I0) 

commutes with H, 

Pa(k)P l = - a ( k ) ,  pf~p 1=--f ix (11) 

The exact eigenstates of H can be classified as even or odd parity 
states. By performing a rotation about the y axis, one can transform 
the Hamiltonian so that fx ~ - f ~ ,  a~ ~ fx. This is a formulation as a 
tunneling problem. 

We are particularly interested in the ground-state energy of the system 
as a function of c~ and B. Note that the magnetization is 

< ~uGI fz I~%> = - 2  aE~/oB (12) 

3. S O U R C E  A N D  C L A S S I C A L  A P P R O X I M A T I O N S  

Two limiting situations serve as reference points. 

3.1. Source  A p p r o x i m a t i o n  

When ~ = 0  the ground state is nondegenerate with energy -B/2, 
and is 

g t = ( 1 )  gt o with a ( k ) ~ o = 0  (13) 
\ u /  
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o r  

~ =  (10) q~ o in the q(k)representation 

This is an eigenstate of parity. 
When B = 0 the eigenstates are given by the unitary transform Us 

Us = exp Ii  f p (k ) fo (k )ax  dk 1, UsHU71 = H o -  ~z/2 (14) 

Here 

fo(k)=l (-~) 1/2 D(k) l (15) 

Us commutes with the parity operator. The ground state is degenerate with 
energy -~/2. The even-parity ground state is 

u, ~0 (16) 

o r  

Here 

~_+ : Q e x p { -  f[q(k)+_fo(k)][q(-k)+fo(-k)]dk } (18) 

The expectation of the number operator with either of these states is 

j j j,a+adkl.)= l dii=] d/  ~ 1 k =2  ln-k o (19) 

In the acoustic case this tends to infinity as the cutoff ko-* 0. This is 
an infrared divergence arising from contributions from long wavelengths, 
The overlap integral for the phonon parts of the degenerate states is 
(q$ I~b+)=exp( -~f~dk)  and tends to zero for the acoustic case. The 
expectation value of az is zero; the overlap integral is zero. 

This transformation introduces a displacement of the q(k) variables 
relative to the instantaneous value of the spin variable ax. I will refer to it 
as the source transformation. 
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The analysis refers to the case B = 0. The B --* 0 limit is subtle. If B r 0, 
ordinary nondegenerate perturbation theory, starting from the states for 

= 0, given an energy 

B ~ ( l  - B l n - ~ )  (20) E =  - ~ - ~  

The wave function is 

g J = N  1 { ( ~ ) 4 o  -21(~) 1/2 f (2k) 1/2D(k) a+(k)dkcrp~ + (21) 

The norm is finite because B r 0, 

 22, N ~ = 1 + 5 ~(~),  ~ ( e )  = In 1 + 

The expectation value of the number operator is, to order c~, 

( ~] f a+a dk I~P) = �89162 (23) 

and becomes vanishingly small if B is fixed and cr ~ 0. 
The distinction between the two cases c~ ,~ B and B,~ c~ (with both B 

and c~ less than unity) is clear when one uses the source transformation, 
leaving f(k) free to be determined by the variational principle. This was 
done by Emery and Luther (3) and Silbey and Harris. (s) The source trans- 
form rotates the spin about the x axis and induces a displacement of q(k). 
Taking the expectation value with a state vector ~o(~), one finds 

B d k ) - ~  ~/2 -~k +-~fkf2dk (24) Es= --~ exp ( -  f f2 (-~) f fdk 1 

The state vector of the original Hamiltonian is the parity eigenfunction, Eq. 
(17). Now we have the possibility of a nonzero overlap Z =  e x p ( - ~ f  2 dk). 

Varying f(k), we find 

f(k){k + Bz} - D(k) x/o~ (25) 
,/k 

c~ [ ( } _ ~ )  1 ] (26) - l n  Z =  1 _--- ~ in I+BZ 

- B Z  o: 1 

E = T  21+BZ (27) 
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These equat ions have been studied by T a n a k a  and Sakurai.  16) One 
first analyzes the equat ion for Z. 

When  ~ < 1, Z(B) goes smooth ly  f rom 0 to 1 as B goes f rom zero to 
infinity. There is a unique Z for any B. For  fixed B as e ~ 0, Z is near  to 1. 
But for fixed c~ < 1, as B ~ 0, Z --* 0. 

Fo r  e = 1, Z is zero at B = 1/e and there is a solution for B > 1/e. But 
for B > 1/e there is no solution. With  the trial function generated by the 
source t ransform,  for B < l/e, one must  switch to a solution with Z = 0 and 
energy equal to - e / 2  and independent  of B. The  theory is trivial in this 
region. The switch at B = 1/e involves a j u m p  to finite Z. In the B < l/e, 

> 1 region the boson  field is long range, as it is for B = 0. When  Z r 0 the 
field is of shorter  range. More  precisely, with parity,  eigenfunctions ~rx~b -= 
(O[ax~b[O) must  be considered, since (4'lr For  Z4:O,  

( ~ ) m  1 1 f]sinklX[ d k (28) 
ax(~(x) = (2rr) 2 Ixl k + BZ 

Thus 

( ~ ) ' / e  1 1 ( 1  z cos lx['~ 
a:,Ofx) = (2~) 2 ix12  ~-~- -~ /+  -.. as Ix] ~ oo (29) 

When  c~ > 1, there are two solutions when B is greater  than  a critical 
value (depending on c~). The lowest energy as obta ined for the larger Z 
solution. There is no solution for B less than this value and one switches to 
the B-independent  fo(k) and energy -c~/2. 

The behavior  on the transit ion line is interesting. Assuming that  Z , ~  1, 
the equat ions become 

- ~  - B  
E =  2 2 ( 1 - c Q Z  (30) 

with 

(31) Z ~ (Be) ~, 7 =-- 
1 

Thus, for Be < 1, Z does tend to zero as c~ ~ 1 f rom below. The  t ransi t ion 
occurs at ~ = 1. The y term dominates  so that  any finite derivative with 
respect to B approaches  zero. On  the other  hand,  for Be > 1 the transi t ion 
occurs on an a(B)  line with a finite j u m p  in the magnet izat ion,  i.e., it is first 
order. For  B,~ 1, Eq. (33) shows that  for 1 /2<c~<  1, the B-dependent  
energy is smaller  than B 2. 
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3.2. Classical Theory 

The preceding calculation must compete with the variational estimate 
from a semiclassical, Hartree-type theory. Here one uses the unitary trans- 
form 

Uc = exp { i f p(k ) h(k ) dk } 

U~q(k) U~-' = q(k) + h(k) 
(32) 

This is independent of the instantaneous values of the spin variable, h(k) is 
the classical value of the boson field. It depends on a mean value of the 
spin 

j - ~ d k a x  (33) 

after averaging with a phonon state ~b 0. The spin is treated quantum 
mechanically. So this is really a semiclassical theory. It is a well-known 
approximation in quantum optics. 

Perform a rotation 

W =  exp lay ~ , tan 0 = B dk (34) 

and take the expectation value with (ol). The wave function for the original 
Hamiltonian is a product function of spin and boson variables, with 0 and 
h(k) determined self-consistently. This gives 

(35) 

Minimization of the energy with respect to h(k) gives 

h(k)= D   sinO 
cos 0 = B/2~ 

--o~ B 2 B 
Ec-  2 8~' c~ >-~ 

(36) 

(37) 

The expectation value of a~ is cos 0. 
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The solution only exists when 2c~ > B. When the condition is violated 
(i.e., for small c~) we must take h ( k ) = 0 ,  and the energy is -B /2 ,  i.e., 
independent of c~. So the theory is trivial, and there is no coupling to 
phonons. The state vector is 

0 0 

The displacement in ~b is h(k). This state vector is not an eigenfunction of 
parity. We can apply ( - i ) P  to gt c and construct the symmetric com- 
bination 

~ = c o s ( ~ ) [ ~ b  + ~ b + ] ( 1 0 ) + s i n ( ~  ) [ ~ b _ - ~ b + ] ( ~ )  (39) 

This is an eigenfunction of the parity operator. However, ~b_ and ~b+ 
involve the displacement h(k) and the overlap (~b_l~b+)=0.  Thus, 
forming the combination does not lower the energy. The antisymmetric 
combination has the same energy. The classical theory has Z - - 0  and the 
spatial phonon field associated with h(k) has the long-range l/Ix[ behavior. 
With the parity eigenfunction constructed from the classical function it is 
axO(x) that has this behavior. 

4. C O M P A R I S O N  O F  S O U R C E  A N D  C L A S S I C A L  T H E O R I E S  

The next step is to compare the energies of the source and classical 
approximations. 

The result of the numerical analysis of E(~) for different values of B is 
summarized in Table I. The ~o are critical coupling constants. For any B, 

< ~o corresponds to the superiority (lower energy) of the source theory. 
The situation ~ > ~D corresponds to a lower energy for the classical theory. 
ZD is the value of the overlap at the intersection of energy curves, c~ o and 
Zo are obtained by equating E, = Ec. One has 

B 2 BZ ~ 1 
b = - - - ~  (40) 

2 8~ 2 2 1 + B Z  

Table I. Source versus Classical Theories 

B 0.00120.0101 0.05 0.1 0.1405 0.20 0.24 0.30 0.368 0.50 0.70 1.00 2.00 4.00 
~o 0.540 0.540 0.60 0.635 0.653 0.69 0.712 0.778 0.800 0.875 1.02 1.20 1.6 3.0 
Zo 0.00120.011 0.05 0.10 0.15 0.215 0.26 0.32 0.37 0.482 0.60 0.70 0.88 0.92 
sin ~c 0.0011 0.009 0.042 0.079 0.108 0.145 0.169 0.200 0.230 0.313 0.343 0.417 0.625 0.667 
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We see that for B ~  1 the jump in Zz~ (since Z - 0  in classical theory) is 
small. The transition to the classical theory is at 7 near 1/2. When B > 1 the 
jump tends to unity. There is also a jump in angle. The source theory 
corresponds to s i n 0 = 0  and for the classical theory sin~,c=B/2c~ 
(~ = n/2 - 0). 

Let us consider E ( B )  for different regions of c~. 

(i) c~ < 1/2. The source theory is superior for all B .  When B Z <  1, we 
have Z ~  (Be)  r, 7 =c( (1  - ~ ) ,  and 

e - 1  
E---r 2 ~ - -  B (Be ) r  (41) 

When B > 1, 

c~ B c~ 
Z ~  I--2B--- 5, E ~  2 4B (42) 

There is no transition as B varies. 

(ii) 1/2 < c~ < 1. For given c~ the classical theory is valid for small B, 
the source theory for larger B. From the table, at ~ = 0.60 the divide is at 
B = 0.05. For  c~ = 0.875 it is at B = 0.50. 

(iii) c~ = 1. Here the source approximation fails for B < l /e = 0.3679. 
But the classical approximation is in fact better for B < 0.67 when Z ~ 0.57. 

(iv) c~ > 1. As c~ increases, the source theory fails in the region B < 1. 
At ~ = 1.02 the classical theory is superior for B < 0.70, the source theory is 
superior for B > 0.70. 

(v) ~ > 1 .  The intersection occurs at ~ , -~ �89  1/2] when 
Z ,,~ 1 - c~/2B 2. 

In sum, comparison of the crude source and classical theories yields a 
picture of crossing of energies. With increasing c~ there is a jump in the 
overlap factor and a transition to the symmetry-breaking long-range boson 
field with Z = 0. Thus, the transition is first order across the ~(B) line. This 
is not surprising, since direct comparison of energies for different 
approximations would be expected to give a first-order transition. The 
description at the intersection is defective. In the next section I use an 
improved wave function to give a better account of the intersection. The 
result is that the transition is very similar to that of the source theory, but 
is nontrivial in the large-c~ region. In addition, the crossover to classical 
behavior occurs ner c~ = 1/2, but continuously, rather than with a jump in 
the first derivatives. 

822/54/1-2-27 
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5. A V A R I A T I O N A L  E X T E N S I O N  

Consider the problem in the q(k) representation. Denote ~b _+ as r with 
q(k)---, q(k)++f(k). The overlap between the two functions is 

Z =  @ +  I~b_ > = exp(-~) ,  ~=ff2dk (43) 

Take as the trial function Eq. (39). The normalization is 

(g t  I ~> = 2 ( l + Z c o s  0) (44) 

We also have (~, = ~ / 2 -  0) 

( ~t az [IP>/< ~1 ~P) = (sin O + Z)/(1 + Z sin 0) 
(45) 

< g'l ~ 17'>/< ~ul 7'> = 0 

This function involves an angle 0 and a function f(k), and is an eigen- 
function of the parity operator. For 0 = ~/2 it is 

1 

and is a linear combination of the degenerate source functions. In that case 
the overlap Z is not zero. 

For general 0 but f(k),-~ D/k 3/2 we have a classical function with 
overlap zero, i.e., the long-range spatial behavior. The projection to an 
eigenfunction of parity gains nothing in energy in the large-c~ region. 

Our wave function uses the angle 0 when Z # 0 to give a better fit of 
the source and classical theories. 0 and f (k )  are to be freely varied. 

It is convenient to use the angle ~b = ~ / 2 -  0 so that sin 0 = cos 0, 
cos 0 = sin 0. We have 

E{l+ZsinO}=--~[sinq/+Z]- cos O D I + ~  ( 1 - Z s i n  O ) ( 4 6 )  

where 

D f  J= f kf 2 dk (47) D~- f -~  dk, 

Variation of E with respect to ~b gives 

~-s Dl(sin~t+Z)=cos~{B (1-Z2)+ZJ} (48) 
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Variation of E with respect to f (k )  shows that f (k )  has the form 

.,,/~ cos ~, D(k) (49) 
f (k )  = 2x/~ 1 - Z sin ~9 (k + fl).,,/k 

f l ( 1 - Z 2 s i n 2 ~ b ) = Z [ B c o s 2 ~ b - - - ~ s i n ( 2 O ) f ~ k k + 2 J s i n O ]  (50) 
2x/= 

We have the basic integrals 

{ = l f  D2dk = l n ( l ~ f l )  l - -  
4~ ~ k(k + fl)----~2 1 + 

I f D2dk l + f i  
Do = ..v k(k + fl------~) = 1 - fl In (51) 

J _  1 DZdk = ( 1 +  fl 1 l+fl '~ 
TTa n--a- ) 

We can now write the equations of the theory in a more convenient form. 
The energy functional can be written as 

2 BZ 2 E ( 1 - - Z 2 s i n 2 ~ ) =  --Bsin ~(I - Z  ) - -~--cos  
O~ COS 2 I// 

2 l + f i  
(52) 

We also have 
l ~ cos 2 ,/,r 

In ~ = (1 - z sin if)2 (53) 

There are two equations representing variation with respect to f and ~. 
The fl equation, after some manipulation, is 

fl [ 1 -  Z2 sin2 ~ + 2z  ln l ( 1 -  Z sin ~ ) sin ~ 1 

[ 2czZ sin2 ~ Jo(fl)] 
= Z c ~  ~ 9 B +  I _ Z  sin ~9)2 (54) 

The angle equation may be put in the form [using the form o f f ( k ) ]  

2 

s i n  ~ = ~-  - + s (55) 

S ~-~ o ~ Z / ~  - ( B / m ) ( 1  - Z 2) 1 - - Z  2 

A , R - ~  (BZ+aD ~ 
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with 

d = Z [ f f ~  - (1--Z2)-~-o~fl~ 1 (56) 

The theory is characterized by three intricately connected equations for Z, 
/3, ~. The preceding forms are efficient for computation in the region fl < 1. 
One may start with a sin ~ equal to the classical B/2c~ and find Z and fl 
from the In(I/Z) and fl equations. Then one recomputes sin ~ and iterates 
to self-consistency. 

One can study the f l~  1, Z ~  1 limit analytically. The energy 
functional has the limiting form 

B o~ 2 
E ~ - ~ sin ~O - ~ cos 

/3Zco2 4j+ ~ 2 ~ cos 2 ~/3 

(57) 

(58) 

Let c~* =c~cos2~O and B*---B c o s  2 ~/. We vary with respct to fl after 
inserting 

Z ~ (e) ~* (59) 

which is the limiting value of 

(61) 

Then 

Z~(B*e)  ~* 7" = ~*/(1 - ~*) 

fl ~ B*Z 
_ ~  ~ B* 

E =  sin ~ - ~ cos2 ~ + - ~  (cr - 1)(B'e) 7. 

The energy shift is positive for c~* > 1. This form can be used to establish 
that there is an infinite-order transition, by an argument like that used for 
for the source theory. 

Let us first study the region B ~ 1. Later we will develop a systematic 
theory in that region. The simple equations of source and classical energies 
gave intersection nearly ~ = 1/2 with the classical theory superior for the 
larger e values. With the present variational theory the transition is con- 
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tinuous. When 1 / 2 < e *  < 1 or 7 * >  1 the last term is negligible for B,~ 1. 
We can use the classical angle sin 0 =B/2:~ and e* = e [ 1 -  (B/2c02] --, c~. 
Thus, the energy takes on the classical value in the region 1/2 < c~ < 1 when 
B ~ I .  

On the other hand, if e < 1/2, the last term contributes the leading 
term -11/2 in energy. Using the classical angle, the energy through terms 
of order B 2 is 

c~ { 8 ) 2 1  B 
E =  - ~  - \~-s ~ - 5  (1 - o t ) ( B e )  ~/' - ~  (62) 

This exhibits a continuous crossover to classical behavior near c~ = 1/2. 
Next we study the e(B) transition as predicted by the variational wave 

function. 
There is a line in the (c~, B) plane such that the classical theory applies 

for c~ above the line. Coming down to the line from larger values of ~, the 
angle approaches sin 0 = B/2c~ on the line. As we move across the line, 
there are two distinct regions. When B<Bc=e/(e 2-  1/4)=0.38076 .... /~ 
and Z are arbitrarily close to zero. So fl, Z, ~ are continuous. All 
derivatives with respect to B vanish. I call this an infinite-order transition. 
The range tends to infinity near the line. 

In the second region B>Bc there is no such behavior and one 
has finite jumps in fl, Z, ~p as one crosses the line. This is a "first-order" 
transition. 

To prove these results, assume/~ ~ 1, Z ~ 1 and use Eqs. (60), (61). 
The condition e* = 1 together with sin O = B/2e defines a critical line 

~c(B) with 

1 + (1 + B2) 1/2 
CZc = (63) 

2 

If now B*z<l, Z , ~ I  provided e * < l  as a * ~ l .  Then 
e * / ( 1 - a * ) ~  +oo. So we have the infinite-order region. The two con- 
ditions e * = l ,  B'e= 1 give the end of the the region at B=Bc= 
e/(e 2 -  I/4). Just as for the source theory, the exponent 7" dominates and 
any finite derivative with respect to B vanishes as ~* ~ 1. 

It follows that for B < B e the divide coupling constant cr D is pushed up 
to ec. = [1 + (1 + B2)1/2]/2 and ZD is pushed to Z =  0. Thus, the domain of 
a ~ where the symmetry is unbroken is extended considerably. The angle 
behavior is such that sin 0 is very small for c~ ~ 1, rises to a maximum as 
increases, and then falls off according to the classical formula sin 0~ = B/2~. 
When B is small the angle remains small throughout. 
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Table II, Angle,  Overlap, and Energy ~ 

Z ~ sin ff IEI lEd  

0 1.0025 0.0499 0.50125 
0.01 0.779 0.064 0.3896 
0.04 0.711 0.071 0.3561 
0.045 0.700 0.072 0.3507 
0.07 0.869 0.0746 0.3357 
0.10 --,0.635 0.0775 0.3295 
0.20 0.545 0.0842 0.2798 
0.30 0.469 0.0887 0.2460 
0.50 0.331 0.0953 0.1826 
0.60 0.265 0.0938 0.1550 
0.70 0.199 0.0873 0.1280 
0.80 0.133 0.0719 0.1016 
0.90 0.067 0.0438 0.0757 

0.5025 
0.3911 
0.3573 
0.3518 
0.3364 
0.3196.-- 
0.2748 
0.2371 

a The results of a numerical solution based on the small-angle formula. B = 0.10. 

As an example, I give numerical results for B =  0.10 in Table II. The 
maximum angle is near ~ = 0.33 when Z =  0.50 and is sin ~ = 0.095. The 
crude divide is at cc --- 0.635, Z = 0.10 when sin ~ = 0.078. The energy going 
with the trial function is lower than the symmetry-breaking classical energy 
up to ~ -  1.0025. 

On the critical line B = B c r  the behavior is similar but the angle 
reaches larger values. 

The transition is first order when B > B , .  The results are particularly 
simple when B ~> 1. The dividing coupling c~ D is near B/2. One has 

Z = 1 - 6Z, 6 Z  = cc/2B 2 (64) 

Matching Es and Ec, we have the correction 

 (11 ) 
1 +  . . .  

B 1 1 1 B 
e~-~ 2 8 8 ~ / 2 ~ / B  at ~ = ~  

(65) 

sin qs = 4B 2 (66) 

The angle increases linearly with ~ and reaches the very small value 
sin ~ =  1/SB at e = B / 2 .  The energy shift is A E = - ( 1 / 8 B 2 ) ( e / 2 B )  3. The 
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jump in in Z is 1 - 1/4B. In fact, there is little change from the crude source 
theory. 

For  smaller values of B but with B > Bor one must have recourse to a 
numerical analysis of the complete equations. 

In summary, the variational calculation improves on the source 
calculation in a number of ways. It shows a smooth transition to classical 
behavior near the line where source and classical energies match. For 
values of a between this line and the ~(B) transition line it is superior to 
both. On the other hand, above the ~(B) line the range is infinite and the 
theory is no better than the classical theory. This indicates that important 
quantum fluctuation effects are not included in the wave function. For  
B*e < 1 the transition is infinite order and the nonclassical contribution is 
very small. In fact, for B,~ 1, calculation to order B 2 gives no transition at 
all. This is what will be found in a more systematic treatment. This 
variational calculation can be used for larger values of B even though the 
physical motivation for the wave function is less clear. The theory gives a 
jump in first derivatives of energy across the line. We will be able to give a 
systematic treatment for B >> 1 which gives the same result but with a more 
trustworthy basis. 

6. SYMMETRY-BREAKING SOURCE THEORY 

In the present section ] examine a different way of combining the 
classical and modified source theories. It is a symmetry-breaking extension 
of the modified source theory. In the large-~ phase it yields quantum fluc- 
tuation corrections to the classical theory. In this respect it is superior to 
the variational extension. On the other hand, in the small-~ phase it 
reduces to the modified source theory and is therefore inferior to the 
variational extension. It will be clear that a better wave function should 
include both effects. This leads to a complicated theory that I have not 
analyzed. 

The trial function of this section is 

@B = exp (--i f pfdkG~,)(-i fph dk)exp I - - i  (~ ) c ry ]  (~)~b0 (67) 

It leads to an ~(B) line that starts at ~ =  1/2 when B ~  1 and tends to 
= B/2 when B >> 1. The transition is everywhere second order, i.e., the first 

derivatives of the energy are continuous. The theory agrees with the 
variational extension in locating the crossover to classical behavior near 
~ =  1/2 (when B<~ 1), but describes it in terms of discontinuous second 
derivatives, rather than continuously. Of course ~s  can be made into an 
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even-parity eigenfunction so that we have a parity eigenfunction in the 
entire c~, B plane. However, as was the case for the classical theory, this 
leads to no improvement in the energy in the broken symmetry phase. 

~ is a succession of unitary transforms involving two functions f (k)  
and h(k) and an angle O. It includes the source and classical theories as 
special cases and given an account of quantum fluctuations in the broken 
symmetry phase. Let 

(68) 

Then, carrying out the variation of the energy functional, we find 

D ) 
h ( k ) = L t  2 \~]  ~ - f ( k ) ~  (69) 

l (a__'] '/2 D(k) (70) 
i (k )  2 \ r c J  x / ~ ( k + 2 ~ - l )  

t a n O = - ~  ~ -  (71) 

L 2= 1 -- (72) 

The order parameter L is nonzero when 

BZo < 2c~ - 1 (73) 

The above equations lead to the explicit results in the broken symmetry 
phase 

1 (BZo) 2 
E -  (75) 

2 8 ~ -  1/2 

The inverse length 2c~- 1 is continuous with the BZ inverse length of the 
source theory on the transition line. With the above simple function this 
length is independent of B in the broken symmetry phase. When B ~ 0 the 
line starts at ~ = 1/2 (as was the case with simple energy matching of 
classical and source theories). 
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The transition occurs along the line 

2 
B =- - -7 ]  o # ( ~  - 1 /2 )  1 ~ 

1 e B  2 
o~ ~ ~ + 2 small B 

B 3 
~ ~- + g large B 

(76) 

(77) 

Along the line the energy has the simple form 

E =  - -7+1/4  (78) 

For every e > 1/2 there is the appropriate B. 
In the broken symmetry phase the first derivatives at the transition 

line are given by 

() (,) OE _ 1 - 2  c~ B ~ ~ In -- 
(79) 

The second derivatives at the line are 

( c~2E'~ [(2e In 2 e - 1/2 1 1 
82E] c~- 1/2 

(80) 

In this phase at large 

1 
Zo ~ t - 8~ (81) 

.2(+,) 
E---> - ~ - 8 - ~  1 ~ (82) 

The last terms describe the effect of quantum fluctuations on the energy 
and order parameter. 
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The normal phase is described by the modified source approximation 
at the transition line Z = Zo and the first derivatives are the same as for the 
broken symmetry phase. The second derivatives at the line are 

(O2E)  _ - 4 e ( ~ -  1/2) 
cOcz2JB 4-~'--1 I ln (2~2~-~ 1) - 1 ]  2 

(0% lZo 1 
DB2J~ 2 B 4a-1 

(84) 

The second derivatives are different for the two phases. 
I note the behavior for small and large B. The 

derivatives are 

DE'] --+ i eB21n(eB2 ) 
8 ~ ) n  2 t-~ as B--*0 

- - -  as B-~oo 
4B 

--+ --2- as B--*O 

1 
- - - +  - - - -  as  B---* oo 

2 

In the broken symmetry phase 

~?ot2je~-[l+eB21n2(eB2)] as B-+0  

2 
- - -  as B-~ 

B 

( ~32E~ e2B 2 as B ~ 0 1 
8B2/~ ~ - 1--6 

1 
--* - - -  as B~,  oo 

2B 

In the normal phase 

c~ot2jn~-eBZ[l+ln(eB2)]2 as B ~ 0  

1 
as B-+ 

2B 

common first 

(85) 

(86) 

(87) 

(88) 

(89) 
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~ B ~ j  ~ ~ - ~ a s  

1 
a s  

4B 2 

B ~ 0  

B - - . ~  

(90) 

7. F O R M U L A T I O N  AS A O N E - M O D E  PROBLEM 

In this section I show that the approximations discussed so far are 
special cases of a one-mode Hamiltonian. This makes possible some 
improvements in the ground-states wave function. The transition is again 
relation to the behavior of an inverse length /~ entering in the privileged 
phonon mode. But we are not restricted to the variational treatment of the 
previous section. Let 

q(k)=qoXo(k)+ ~" qnXn(k) (91) 
nv~0 

where Xo, Xn forms an orthonormal set. In the present paper I do not need 
to specify the Xn. I take the expectation value with a state vector that ~b 
that has the property A, q5 = 0. Here 

An+A + 
q"=  ,,/2 (92) 

Alternatively, the trial state vector has its q, dependence in a factor 
exp{ -Z ,~0(q~/2)} .  

We have the one-mode Hamiltonian 

B l(~_) 1/2 DXod k Too 
H=--~az - -~ \ ,~ /  f J k  q~ 

(93) 

Too = J kX 2 dk 

I now make a particular choice for the mode X o 

1 D(k) 
Xo(k) = (4~)1/2 ~/k k + 3 (94) 

For the acoustic case, this is the same ~ as was defined earlier. I note, in 
passing, that for the optical case, where on(k) is constant, the full spin 
phonon Hamiltonian has only one phonon mode in interaction with the 
spin. 
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We have normalized Xo(k). fl is the only free parameter in this 
variational calculation. 

The Hamiltonian takes the form 

H=---~a z (o~)l/2qoCrx+ (pg+qg--  1) (95) 

and 

Too + fl = Do/~ (96) 

The above refers to the normal phase. When there is symmetry 
breaking we use Uc to transform the Hamiltonian first. We consider 

We need to find the ground state 4o of the 1st three terms as a functional of 
h(k). Then h(k) is determined from 

. ~ o  kh(k) + 6-h-~ = 0 (98) 

Our earlier theories involve S p(k)f(k)dk=(~)l /2po and thus can be 
viewed as particular approximations to the one-mode Hamiltonian. It is 
easy to think of better approximations. The problem is exactly soluble in 
the sense that there is a three-term recursion relation which may be studied 
numerically to any desired accuracy. There have been many papers devoted 
to the one-mode problem. Very important is the analysis of Shore and 
Sander. ~9) They used the numerical solution to show the inadequacy of the 
source type of approximation, which predicts spurious discontinuities of 
the energy. They suggested an improved variational ansatz. The variational 
calculation of Section 4 is similar to theirs. For a discussion of analytic 
approaches to the one-mode Hamiltonian see Wagner (1~ and Prelovsek. (7) 
The present involves the additional step of finding the optimum fl, and in 
the symmetry-breaking phase of h(k). I have not tried to do the extensive 
numerical work that is needed. 

8. C O N C L U S I O N S  

I have discussed the location of the ~(B) line and the nature of the 
transition. The approach has been to start with two simple approximate 
ground-state wave functions. By contrasting them, one sees the deficiencies 
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and strengths of each of them. I then construct better and more com- 
plicated functions that take account of multiple quantum excitations and 
quantum fluctuations in both normal and broken symmetry phases. The 
analysis is partly negative in that it shows why one should not believe the 
predictions of some simple theories. This line of thinking culminates in the 
formulation of Section 7 that involves a symmetry-breaking field h(k) and a 
spin coupled dynamically to a single mode of the phon'on field and charac- 
terized by an inverse length ft. It is possible that a definite answer to the 
behavior for general B is contained in this Hamiltonian. However, I have 
not carried out the analysis to show this. 

Definite conclusions can be obtained by other methods for the B ~ 1 
case, where there is no transition to order B 2, and for B ~> 1, where there is 
a first-order transition. This is done in the accompanying papers. 

Note that in the symmetry-breaking phase, one can always use parity 
eigenfunctions. We have ground-state wave functions that are eigen- 
functions of parity for all ~, B. It is just that the zero overlap means that 
there is no improvement in energy by using such functions. The broken 
symmetry coincides with the appearance of a 1/]xl behavior for the 
ground-state average crx~b(x ). 
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